
Software Modules

Page 1 of 2
Updated by the HPC Team on the 26/04/17

Default Environment

The user environment is setup using environment modules. By default, a number of modules
are automatically loaded to configure the environment to allow running of applications and
the submission of jobs to the cluster.

It is possible to change the environment which is loaded when logging in, by editing the shell
initialisation file ~/.bashrc (or ~/.cshrc or ~/.tcsh if using csh/tcsh as your shell). If your shell
initialisation file is modified it will affect all future login sessions, and all batch jobs not yet
started. Since some modules are required for proper operation of the account, caution is
needed before removing any automatically loaded modules. Changes to the shell initialisation
file will take effect during the next login or at the creation of the next shell.

At any time you can check the currently loaded modules via:

module list

which possibly produce the following output:

Currently Loaded Modulefiles:

1) default-manpath/1.2.1

2) torque-oscar/4.2.9

3) oscar-modules/1.0.5

Modules work by setting environment variables such as PATH and LD_LIBRARY_PATH. Therefore if you

need to modify variables directly it is essential to retain the original values to avoid breaking loaded

modules (and potentially rendering essential software "not found"), e.g. do

export PATH=$PATH:/home/abc123/custom_bin_directory

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/abc123/custom_lib_directory

and not

export PATH=/home/abc123/custom_bin_directory

export LD_LIBRARY_PATH=/home/abc123/custom_lib_directory

System modules

On complex computer system, it is necessary to make available a wide choice of software
packages with possible multiple versions. It can be quite difficult to set up the user
environment so as to always find the required executables and libraries. (This is particularly
true where different versions use the same names for files). Environment modules provide a
way to selectively activate and deactivate modifications to the user environment which allow
particular packages and versions to be found.

The basic command to use is module:

module

(no arguments) print usage instructions

avail|av list available software modules

add|load <modulename> add a module to your environment

rm|unload <modulename> remove a module

list|li list currently loaded modules

purge remove all modules

whatis as above with brief descriptions

Since the home directory is shared with the compute nodes, the same default environment is
inherited when a user's job commences via the queuing system. It is good practice to explicitly
set up the module state in the job submission script to remove ambiguity.

Using modules in batch files

To use the software package xxx in a job submission script it is a simple matter of specifying

module load xxx

The naming convention for modules are [software/version-compiler]. Below is a list of the extensions:

1. –gnu, software compiled with standard GNU compiler.

2. –intel, software compiled with Intel compiler.

3. –gcc485, software compiled with GNU v4.8.5 compiler.

4. No extension, is commercial software that wasn’t compiled.

Creating your own modules

Apart from the available system environment modules, you can define your own modules. If you load the
use.own module, as below,

module load use.own

this will change your MODULEPATH environment variable and add the directory

$HOME/privatemodules to it. This is the default location of private modules. See

man modulefile

for further information on writing your own modules.

