

Unix/Linux Basics

Introduction
The USQ’s HPC Facility is Linux based system. The information in this document provides

some basic information about command-line commands, editors available and environmental

variables.

Unix/Linux Commands

Below is a list of commonly used commands when working on the command-line.

Command Description

Commonly Used Unix/Linux Commands

cat / more / less filename lt a file on the standard output

cd dirname change directory. Basically 'go' to another directory, and
you will see the files in that directory when you do 'ls'.

cp filename1 filename2 copy a file and directory

grep astring filename search for a regular expression in a file

ls list directory contents

man command display the on-line manual page for a command

mkdir dirname make a new directory
mv filename1 filename2 move a file, i.e. gives it a different name, or moves it into a

different directory

pwd print name of current/working directory

rm filename remove file

rmdir dirname remove directory

File Compression Commands

gzip filename compresses files, so that they take up much less space. Gzip
produces files with the ending '.gz' appended to the original
filename.

gunzip filename uncompresses file compressed by gzip.

tar –czf file.tar.gz files create a tar with Gzip compression containing files

zcat filename lets you look at a gzipped file without actually having to
gunzip it (same as gunzip -c).

Page 2 of 7
Updated by the HPC Team on 26/04/17

Other Useful Commands

date shows the current date and time

du filename shows the disk usage of the files and directories in filename

emacs filename edit filename in emacs

last yourusername

lists your last logins
ps –u yourusername lists your processes

vi filename edit filename in vi (VIM editor)

wc filename count words in a file
whoami returns your username

Connect/Copy files to remote host

ssh user@host secure login to remote host
scp file
user@host:destination

secure copy to remote host

Shortcuts

Ctrl+C Halts the current command

Ctrl+Z stops the current commands, resume with fg (foreground)
or bg (background)

Ctrl+D log out of current session, similar to exit or logout

Editors

This section is only intended to provide the minimum amount of information about individual editors,

enough to open or close a file, make simply changes and then save or quit. For more information about

individual editor review their manual (man) pages or visit their respective web sites.

Vi Editor

Vi is not the most user friendly or powerful of editors though it’s extremely useful as it is the

standard editor on all Unix systems. If you need more information consult other Unix references

or visit Vim home page.

Starting vi

vi filename

http://www.vim.org/

Page 3 of 7
Updated by the HPC Team on 26/04/17

vi operates in two modes, i.e. command and input modes, however only command mode will be

discussed here as this is default mode and allows the user to move around a file.

Key
Combinations

Results

Creating Text
i Insert before current cursor position

I Insert at beginning of current line

a Insert (append) after current cursor position

A Append to end of line

r Replace 1 character

R Replace mode

<ESC> Terminate insertion or overwrite mode

Deletion of Text

x Delete single character

dd Delete current line and put in buffer
ndd Delete n lines (n is a number) and put them in buffer

J Attaches the next line to the end of the current line (deletes carriage
return).

Oops - made a mistake

u Undo last command

Cut and paste

yy Yank current line into buffer

nyy Yank n lines into buffer

p Put the contents of the buffer after the current line

P Put the contents of the buffer before the current line

Cursor positioning

^d Page down

^u Page up

:n Position cursor at line n

:$ Position cursor at end of file

^g Display current line number

h,j,k,l Left, Down, Up, and Right respectively. Arrow keys should also work
if your keyboard mappings are correct.

Page 4 of 7
Updated by the HPC Team on 26/04/17

Saving and quitting and other commands

:w Write the current file.

:w new.file Write the file to the name 'new.file'.
:w! existing.file Overwrite an existing file with the file currently being edited.

:wq Write the file and quit.

:q Quit.

:q! Quit with no changes.

:e filename Open the file 'filename' for editing.

:set number Turns on line numbering
:set nonumber Turns off line numbering

Emacs Editor

Emacs is a powerful text editor provided by the GNU Free Software Foundation, a non-profit

organisation dedicated to providing high quality public domain software. If you need more

information consult other Unix references or visit EMACS home page.

Starting Emacs

emacs filename

Key Combinations Results

Quitting
<CTRL>-x
<CTRL>-c

Quit

<CTRL>-g Pushed the wrong key. Help

Working with Files

<CTRL>-x
<CTRL>-f

Load a file

<CTRL>-x
<CTRL>-f

Load a directory

<CTRL>-x
<CTRL>-f

New file

<CTRL>-x
<CTRL>-s

Save a file

<CTRL>-x s Save all open files

<CTRL>-x
<CTRL>-w

Save a file with a new name

http://www.emacs.org/

Page 5 of 7
Updated by the HPC Team on 26/04/17

Working with Buffers

<CTRL>-x b Switch buffers

<CTRL>-x k Close buffer

<CTRL>-x 2 Split current buffer

<CTRL>-x 1 Make current buffer the only one on screen

<CTRL>-x o Switch between the buffers on-screen

Cutting and Pasting

<CTRL><SPACE> Set mark

<CTRL>-w Cut and save text from here to mark

<CTRL>-y Paste saved text

<CTRL>-k Cut ext from the cursor to the end of the line

Unix Variables

Variables are a way of passing information from the Unix shell to programs. Programs look "in the

environment" for particular variables and if they are found will use the values stored. Some are set by

the system, others by the user, yet others by the shell, or any program that loads another program.

Standard UNIX variables are split into two categories, shell variables and environment

variables. In broad terms, shell variables apply only to the current instance of the shell and are

used to set short-term working conditions; environment variables are those set at login and are

valid for the duration of the session. The general convention is, shell variables have lower case

and environment variables have UPPER CASE names though this depends on the shell you are

using.

The two main shells available are bash and csh or tcsh. The information below relates to the

bash shell.

The bash shell does not really distinguish between shell and environment variables. When a

shell starts, it reads the information in the table of environment variables, defines a shell

variable for each one, using the same name (also uppercase by convention), and copies the

values. From that point on, the shell only refers to its shell variables. If a change is made to a

shell variable, it must be explicitly "exported" to the corresponding environment variable in

order for any forked subprocesses to see the change.

Shell Variables
An example of a shell variable is the USER variable.

% echo $USER

Page 6 of 7
Updated by the HPC Team on 26/04/17

More examples of shell variables are:

 DISPLAY (the name of the computer screen to display X windows)
 HOME (the path name of your home directory)
 HOSTNAME (name of the host you have logged into)
 LOGNAME (your login name)
 PATH (the directories the shell should search to find a command)
 PROMPT_COMMAND (the text string used to prompt for interactive commands shell your

login shell)
 PS1 (display prompt)
 PWD (your current working directory)

Shell variables are defined by assignment statements and are unset by the unset command. The

format of the assignment statement is:

% NAME=value[; export NAME]

where there are no spaces around the equal sign (=). The unset command format is:

% unset NAME

where NAME is the variable name, and value is a character string that is the value of the variable.

Finding out the current values of variables.

SHELL variables can be both set and displayed using the set command. In the bash shell the

export command can be used to export variables. To show the value of all shell variables, type

% set | less

ENVIRONMENT variables are set using the setenv command, displayed using the printenv or env

commands, and unset using the unsetenv command. To show all values of these variables, type

% printenv | less

So what is the difference between PATH and path?

In general, environment and shell variables that have the same name (apart from the case) are

distinct and independent, except for possibly having the same initial values. There are

exceptions, however.

Each time the shell variables home, user and term are changed, the corresponding environment

variables HOME, USER and TERM receive the same values. However, altering the

environment variables has no effect on the corresponding shell variables.

Page 7 of 7
Updated by the HPC Team on 26/04/17

PATH and path specify directories to search for commands and programs. Both variables

always represent the same directory list, and altering either automatically causes the other to

be changed.

References:
1. Haviland, K., Gray, G., & Salama, B. (1999). UNIX system programming. Addison-

Wesley Longman Publishing Co., Inc..

2. Chan, T. (1996). Unix system programming using C++. Prentice-Hall, Inc..

3. Raymond, E. S. (2003). The art of Unix programming. Addison-Wesley Professional.

4. McGilton, H., & Morgan, R. (1983). Introducing the UNIX system. McGraw-Hill.

